
Page 14 FoxRockX May 2014

Getting the Top N for each
Group
Several features of SQL Server combine to make a hard problem in VFP easy.

Tamar E. Granor, Ph.D.

In my previous articles in this series, I’ve
explored several features in SQL Server
that don’t have analogues in VFP. These
features make it much easier to solve
certain problems. This article introduces
another such feature that simplifies
another common problem.
Both VFP and SQL Server include the
TOP n clause, which allows you to
include in the result only the first n
records that match a query’s filter con-
ditions. But TOP n doesn’t work when
what you really want is the TOP n for
each group in the query.

Suppose a company wants to know
its top five salespeople for each year in
some period. In VFP, you need to com-
bine SQL with Xbase code or use a trick to get the
desired results. With SQL Server, you can do it with
a single query.

The VFP solution
Collecting the basic data you need to solve
this problem is straightforward. Listing 1
(EmployeeSalesByYear.PRG in this month’s down-
loads) shows a query that provides each employees
sales by year; Figure 1 shows part of the results.
(The VFP examples in this article use the Northwind
database.)

Listing 1. Getting total sales by employee by year is easy in
VFP.
SELECT FirstName, LastName, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Employees ;
 JOIN Orders ;
 ON Employees.EmployeeID = ;
 Orders.EmployeeID ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrEmployeeSalesByYear

However, when you want to keep only the top
five for each year, you need to either combine SQL
code with some Xbase code or use a bit of a trick
that can result in a significant slowdown with large
datasets.

SQL plus Xbase
The mixed solution is easier to follow, so let’s
start with that one. The idea is to first select the
raw data needed, in this case, the total sales by
employee by year. Then we loop through on the
grouping field, and select the top n (five, in this
case) in each group and put them into a cursor.
Listing 2 (TopnEmployeeSalesByYear-Loop.PRG
in this month’s downloads) shows the code; Figure
2 shows the result.

Listing 2. One way to find the top n in each group is to collect
the data, then loop through it by group.
SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID =
 OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

Figure 1. The query in Listing 1 produces the total sales for each employee by year.

May 2014 FoxRockX Page 15

CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

SELECT distinct OrderYear ;
 FROM csrEmpSalesByYear ;
 ORDER BY OrderYear ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 ;
 FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN csrEmpSalesByYear ;
 ON Employees.EmployeeID = ;
 csrEmpSalesByYear.EmployeeID ;
 WHERE csrEmpSalesByYear.OrderYear = ;
 m.nYear ;
 ORDER BY, TotalSales DESC

ENDSCAN

USE IN csrYears
USE IN csrEmpSalesByYear
SELECT csrTopEmployeeSalesByYear

The fi rst query is just a simpler version of
 Listing 1, omitting the Employees table and the
ORDER BY clause; both of those will be used later.
Next, we create a cursor to hold the fi nal results.
Then, we get a list of the years for which we have
data. Finally, we loop through the cursor of years

and, for each, grab the top fi ve salespeople for that
year, and put them into the result cursor, adding
the employee’s name and sorting as we insert.

You can actually consolidate this version a
little by turning the fi rst query into a derived table
in the query inside the INSERT command. Listing
3 (TopnEmployeeSalesByYear-Loop2.PRG in this
month’s downloads) shows the revised version.
Note that you have to get the list of years directly
from the Orders table in this version. This version,
of course, gives the same results.

Li sting 3. The code in Listing 2 can be reworked to use a
derived table to compute the totals for each year.
CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

SELECT distinct YEAR(OrderDate) AS OrderYear ;
 FROM Orders ;
 ORDER BY OrderYear ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 ;
 FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;

Fi gure 2. The query in Listing 2 produces these results.

Page 16 FoxRockX May 2014

 SUM(UnitPrice * Quantity) ;
 AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 WHERE YEAR(OrderDate) = m.nYear ;
 GROUP BY 1, 2) csrEmpSalesByYear ;
 ON Employees.EmployeeID = ;
 csrEmpSalesByYear.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
SELECT csrTopEmployeeSalesByYear

SQL-only
The alternative VFP solution uses only SQL
commands, but relies on a trick of sorts. Like the
mixed solution, it starts with a query to collect the
basic data needed. It then joins that data to itself
in a way that results in multiple records for each
employee/year combination and uses HAVING to
keep only those that represent the top n records.
Finally, it adds the employee name. Listing 4
(TopNEmployeeSalesByYear-Trick.prg in this
month’s downloads) shows the code.

Listing 4. This solution uses only SQL, but requires a tricky join
condition.
SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice * Quantity) ;
 AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

SELECT FirstName, LastName, ;
 OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT ESBY1.EmployeeID, ;
 ESBY1.OrderYear, ;
 ESBY1.TotalSales ;
 FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ;
 ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ;
 ESBY2.TotalSales ;
 GROUP BY 1, 2,3 ;
 HAVING COUNT(*) <= 5) csrTop5;
 ON Employees.EmployeeID = ;
 csrTop5.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrTopEmployeeSalesByYear

The first query here is just a variant of List-
ing 1. The key portion of this approach is the
derived table in the second query, in particular,
the join condition between the two instances
of csrEmpSalesByYear, shown in Listing 5.
Records are matched up first by having the
same year and then by having sales in the first
instance be the same or more than sales in the

second instance. This results in a single record for
the employee from that year with the highest sales
total, two records for the employee with the second
highest sales total and so on.

Listing 5. The key to this solution is the unorthodox join condi-
tion between two instances of the same table.
FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ESBY2.TotalSales

The GROUP BY and HAVING clauses then
combine all the records for a given employee and
year, and keeps only those where the number of
records in the intermediate result is five or fewer
(that is, where the count of records in the group is
five or less), providing the top five salespeople for
each year.

To make more sense of this solution, first
consider the query in Listing 6 (included in this
month’s downloads as
TopNEmployeeSalesByYearBeforeGrouping.prg).
It assumes we’ve already run the query to create the
EmpSalesByYear cursor. It shows the results from
the derived table in Listing 4 before the GROUP BY
is applies. In the partial results shown in Figure 3
you can see one record for employee 9 in 1996, two
for employee 6, three for employee 7 and so forth.
(If this still doesn’t make sense, try adding the field
ESBY2.TotalSales to the query, so you can see that
each row represents an employee with the same or
lower total sales as the one you’re looking at.)

Listing 6. This query demonstrates the intermediate results for
the derived table in Listing 4.
SELECT ESBY1.EmployeeID, ;
 ESBY1.OrderYear, ;
 ESBY1.TotalSales ;
 FROM EmpSalesByYear ESBY1 ;
 JOIN EmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ;
 ESBY2.TotalSales ;
 ORDER BY ESBY1.OrderYear, ;
 ESBY1.TotalSales ;
 INTO CURSOR csrIntermediate

Figure 3. The query in Listing 6 unfolds the data that’s grouped in the
derived table.

May 2014 FoxRockX Page 17

The problem with this approach to the problem
is that, as the size of the original data increases, it
can get bogged down. So while this solution has a
certain elegance, in the long run, a SQL plus Xbase
solution is probably a better choice.

The SQL Server solution
Solving the top n by group problem in SQL Server
uses a couple of CTEs (computed table expressions,
explained in my last article), but also uses another
construct that’s not available in VFP’s version of
SQL.

The OVER clause lets you apply a function to
all or part of a result set; it’s used in the field list.
There are several variations, but the basic structure
is shown in Listing 7.

Listing 7. The OVER clause lets you apply a function to all or
some of the records in a query.
<function> OVER (<grouping and/or ordering>)

OVER lets you rank records, as well as apply-
ing aggregates to individual items in the field list.
In SQL Server 2012, OVER has additional features
that let you compute complicated aggregates such
as running totals and moving averages.

For the top n by group problem, we want to
rank records within a group and then keep the top
n. To do that, we can use the ROW_NUMBER()
function, which , as its name suggests, returns the
row number of a record within a group (or the
entire result set, if no grouping is specified).

For example, Listing 8 (included in this month’s
downloads as EmployeeOrderNumber.sql) shows
a query that lists AdventureWorks (2008) employ-
ees in the order they were hired, giving each an
"employee order number." Here, the data is ordered
by HireDate and then ROW_NUMBER() applied to
provide the rank of each record. Figure 4 shows
partial results.

Listing 8. Using ROW_NUMBER() with OVER lets you give
records a rank.
SELECT FirstName, LastName, HireDate,
 ROW_NUMBER() OVER (ORDER BY HireDate)
 AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID

But look at Ruth Ellerbock and Gail Erickson;
they have the same hire date, but different values
for EmployeeOrderNumber. Sometimes, that’s
what you want, but sometimes, you want such
records to have the same value.

The ROW_NUMBER() funtion doesn’t know
anything about ties. However, the RANK() function
is aware of ties and assigns them the same value,
then skips the appropriate number of values. List-
ing 9 (EmployeeRank.SQL in this month’s down-

loads) shows the same query using RANK() instead
of ROW_NUMBER(); Figure 5 shows the first few
records. This time, you can see that Ellerbock and
Erickson have the same rank, 8, while Barry John-
son, who immediately follows them, still has a rank
of 10.

Listing 9. The RANK() function is aware of ties, assigning them
the same value.
SELECT FirstName, LastName, HireDate,
 RANK() OVER (ORDER BY HireDate)
 AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID

You can’t say that either ROW_NUMBER() or
RANK() is right; which one you want depends on
the situation. In fact, there’s a third related function,
DENSE_RANK() that behaves like RANK(), giving
ties the same value, but then continues numbering

Figure 4. The query in Listing 8 applies a rank to each employee by
hire date.

Figure 5. Using RANK() assigns the same EmployeeOrder-
Number to records with the same hire date.

Page 18 FoxRockX May 2014

in order. That is, if we used DENSE_RANK() in this
example, Barry Johnson would have a rank of 9,
rather than 10.

Partitioning with OVER
In addition to specifying ordering, OVER also
allows us to divide the data into groups before
applying the function, using the PARTITION BY
clause. The query in Listing 10 (included in this
month’s downloads as EmployeeRankByDept.sql)
assigns employee ranks within each department
rather than for the company as a whole by using
both PARTITION BY and ORDER BY. Figure 6
shows partial results; note that the numbering
begins again for each department and the handling
of ties.

Listing 10. Combining PARTITION BY and ORDER BY in the
OVER clause lets you apply ranks within a group.
SELECT FirstName, LastName, StartDate,
 Department.Name,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
 AS EmployeeRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID =
 EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID =
 Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EndDate IS null

This example should provide a hint as to how
we’ll solve the top n by group problem, since
we now have a way to number things by group.
All we need to do is filter so we only keep those
whose rank within the group is in the range of
interest. However, it’s not possible to filter on the
computed field EmployeeOrderNumber in the
same query. Instead, we turn that query into a

CTE and filter in the main query, as in Listing 11
(LongestStandingEmployeesByDept.sql in this
month’s downloads).

Listing 11. Once we have the rank for an item within its group,
we just need to filter to get the top n items by group.
WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
 Department.Name AS Department,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
 AS EmployeeRank
 FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID =
 EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID =
 Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EndDate IS NULL)

 SELECT FirstName, LastName, StartDate,
 Department
 FROM EmpRanksByDepartment
 WHERE EmployeeRank <= 3
 ORDER BY Department, StartDate

Figure 7 shows part of the result. Note that
there are many more than three records shown
for the Sales department because a whole group
of people started on the same day. If you really
want only three per department and don’t care
which records you omit from a last-place tie, use
RECORD_NUMBER() instead of RANK().

Applying the same principle to finding the top
five salespeople by year at AdventureWorks (to
match our VFP example) is a little more complicated
because we have to compute sales totals first. To
make that work, we first use a CTE to compute those
totals and then a second CTE based on that result to
add the ranks. Listing 12 (TopSalesPeopleByYear.
sql in this month’s downloads) shows the complete
query.

Figure 6. Here, employees are numbered within their current depart-
ment, based on when they started in that department.

Figure 7. The query in Listing 11 provides the three longest-standing
employees in each department. When there are ties, it may produce
more than three results.

May 2014 FoxRockX Page 19

Listing 12. Finding the top five salepeople by year requires
cascading CTEs, plus the OVER clause.
WITH TotalSalesBySalesPerson AS
(SELECT BusinessEntityID,
 YEAR(OrderDate) AS nYear,
 SUM(SubTotal) AS TotalSales
 FROM Sales.SalesPerson
 JOIN Sales.SalesOrderHeader
 ON SalesPerson.BusinessEntityID =
 SalesOrderHeader.SalesPersonID
GROUP BY BusinessEntityID, YEAR(OrderDate)),

RankSalesPerson AS
(SELECT BusinessEntityID, nYear, TotalSales,
 RANK() OVER
 (PARTITION BY nYear
 ORDER BY TotalSales DESC) AS nRank
 FROM TotalSalesBySalesPerson)

SELECT FirstName, LastName, nYear, TotalSales
 FROM RankSalesPerson
 JOIN Person.Person
 ON RankSalesPerson.BusinessEntityID =
 Person.BusinessEntityID
 WHERE nRank <= 5

The first CTE, TotalSalesBySalesPerson, con-
tains the ID for the salesperson, the year and that
person‘s total sales for the year. The second CTE,
RankSalesPerson, adds rank within the group to
the data from TotalSalesByPerson. Finally, the main
query keeps only the top five in each and adds the
actual name of the person. Figure 8 shows partial
results.

It’s worth noting the very cool feature demon-
strated by this query. Not only can a query have
multiple CTEs, but CTEs later in the list can be
based on previous CTEs. So RankSalesPerson uses
TotalSalesBySalesPerson in its FROM list.

Final thoughts
The OVER clause has other uses, such as helping to
de-dupe a list. In SQL 2012, it’s even more useful,
with the ability to apply the function to a group of
records based not only on an expression, but based
on position within a group. Future articles in this
series may present some of these techniques.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 8. These partial results show the top five salespeople
by year.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2014 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respective companies.

